A binary tree is full if every node has 0 or 2 children.‚Äč

In a Full Binary, a number of leaf nodes are a number of internal nodes plus 1. 

L = I + 1 where L = Number of leaf nodes, I = Number of internal nodes

 

In a k-ary tree where every node has either 0 or k children.

L = (k - 1)*I + 1 Where L = Number of leaf nodes,  I = Number of internal nodes 

 

 

Time Complexity

Space Complexity

 

Average

Worst

Worst

Data Structure 

 Access 
 Search 
 Insertion 
 Deletion 
 Access 
 Search 
 Insertion 
 Deletion 
 

Binary Search Tree

Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(n) O(n) O(n) O(n) O(n)

Cartesian Tree

N/A Θ(log(n)) Θ(log(n)) Θ(log(n)) N/A O(n)  O(n)  O(n)  O(n)

B-Tree

Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

Red-Black Tree

Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

Splay Tree

N/A Θ(log(n)) Θ(log(n)) Θ(log(n)) N/A O(log(n)) O(log(n)) O(log(n)) O(n)

AVL Tree

Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

KD Tree

Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(n) O(n) O(n) O(n) O(n)